Криптографические Методы Защиты Информации Реферат

Уважаемый гость, на данной странице Вам доступен материал по теме: Криптографические Методы Защиты Информации Реферат. Скачивание возможно на компьютер и телефон через торрент, а также сервер загрузок по ссылке ниже. Рекомендуем также другие статьи из категории «Учебники».

Криптографические Методы Защиты Информации Реферат.rar
Закачек 852
Средняя скорость 4532 Kb/s
Скачать

Информация приобрела самостоятельную коммерческую ценность не так давно и стала широко распространенным, почти обычным товаром. Ее производят, хранят, транспортируют, продают и покупают, а значит — воруют и подделывают — и, следовательно, ее необходимо защищать.
Среди всего спектра методов защиты данных от нежелательного доступа особое место занимают криптографические методы. В отличие от других методов, они опираются лишь на свойства самой информации и не используют свойства ее материальных носителей, особенности узлов ее обработки, передачи и хранения.
Широкое применение компьютерных технологий и постоянное увеличение объема информационных потоков вызывает постоянный рост интереса к криптографии. В последнее время увеличивается роль программных средств защиты информации, просто модернизируемых не требующих крупных финансовых затрат в сравнении с аппаратными криптосистемами. Современные методы шифрования гарантируют практически абсолютную защиту данных, но всегда остается проблема надежности их реализации.
В настоящее время особо актуальной стала оценка уже используемых криптоалгоритмов. Задача определения эффективности средств защиты зачастую более трудоемкая, чем их разработка, требует наличия специальных знаний и, как правило, более высокой квалификации, чем задача разработки. Это обстоятельства приводят к тому, что на рынке появляется множество средств криптографической защиты информации, про которые никто не может сказать ничего определенного. При этом разработчики держат криптоалгоритм в секрете. Однако задача точного определения данного криптоалгоритма не может быть гарантированно сложной хотя бы потому, что он известен разработчикам. Кроме того, если нарушитель нашел способ преодоления защиты, то не в его интересах об этом заявлять. Поэтому обществу должно быть выгодно открытое обсуждение безопасности систем защиты информации массового применения, а сокрытие разработчиками криптоалгоритма должно быть недопустимым.

КРИПТОГРАФИЯ И ШИФРОВАНИЕ

Криптография — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонним), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.
Изначально криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст. Традиционная криптография образует раздел симметричных криптосистем, в которых зашифрование и расшифрование проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи , хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.
Криптография не занимается защитой от обмана, подкупа или шантажа законных абонентов, кражи ключей и других угроз информации, возникающих в защищённых системах передачи данных.
Криптография — одна из старейших наук, её история насчитывает несколько тысяч лет.
С помощью криптографических методов возможно:
• шифрование информации;
• реализация электронной подписи;
• распределение ключей шифрования;
• защита от случайного или умышленного изменения информации.

1.1 Криптографические модели

2.1 Криптография с симметричными ключами

В криптографии с симметричными ключами (классическая криптография) абоненты используют один и тот же (общий) ключ (секретный элемент) как для шифрования, так и для расшифрования данных.

Следует выделить следующие преимущества криптографии с симметричными ключами:

• относительно высокая производительность алгоритмов;

• высокая криптографическая стойкость алгоритмов на единицу длины ключа.

К недостаткам криптографии с симметричными ключами следует отнести:

• необходимость использования сложного механизма распределения ключей;

• технологические трудности обеспечения неотказуемости.

2.2 Криптография с открытыми ключами

Для решения задач распределения ключей были использованы идеи

асимметричности преобразований и открытого распределения ключей Диффи и Хеллмана. В результате была создана криптография с открытыми ключами, в которой используется не один секретный, а пара ключей: открытый (публичный) ключ и секретный (личный, индивидуальный) ключ, известный только одной взаимодействующей стороне. В отличие от секретного ключа, который должен сохраняться в тайне, открытый ключ может распространяться публично. На Рисунке 1 представлены два свойства систем с открытыми ключами, позволяющие формировать зашифрованные и аутентифицированные сообщения.

Рис. 1 Два свойства криптографии с открытыми ключами

1.2 Алгоритмы шифрования и их классификация

Симметричные (с секретным, единым ключом, одноключевые, single-key).
Потоковые (шифрование потока данных):
• с одноразовым или бесконечным ключом (infinite-key cipher);
• с конечным ключом (система Вернама — Vernam);
• на основе генератора псевдослучайных чисел (ПСЧ).
Блочные (шифрование данных поблочно):
Шифры перестановки (permutation, P-блоки);
Шифры замены (подстановки, substitution, S-блоки):
• моноалфавитные (код Цезаря);
• полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma);
Составные:
• Lucipher (фирма IBM, США);
• DES (Data Encryption Standard, США);
• FEAL-1 (Fast Enciphering Algoritm, Япония);
• IDEA/IPES (International Data Encryption Algorithm/
• Improved Proposed Encryption Standard, фирма Ascom-Tech AG, Швейцария);
• B-Crypt (фирма British Telecom, Великобритания);
• ГОСТ 28147-89 (СССР); * Skipjack (США).
Асимметричные (с открытым ключом, public-key):
• Диффи-Хеллман DH (Diffie, Hellman);
• Райвест-Шамир-Адлeман RSA (Rivest, Shamir, Adleman);
• Эль-Гамаль ElGamal.
Кроме того, есть разделение алгоритмов шифрования на собственно шифры (ciphers) и коды (codes). Шифры работают с отдельными битами, буквами, символами. Коды оперируют лингвистическими элементами (слоги, слова, фразы).

Область применения криптографии

В последние десятилетия область применения криптографии расширилась и включает не только тайную передачу сообщений, но и методы проверки целостности сообщений, идентификации получателя/отправителя сообщения, цифровую подпись, интерактивную проверку, защищённые вычисления и другие.

Шифрованием пытались достичь гарантированной секретной связи в первую очередь в таких областях, как шпионаж, военное дело и дипломатия. Так, существуют древние еврейские зашифрованные тексты.

Стеганография (то есть сокрытие самого факта передачи сообщения) также появилась в античные времена. Первый пример передачи скрытого сообщения из Геродота — татуировка, сделанная на обритой голове раба, скрытая под отросшими волосами. Более современные примеры стеганографии состоят в использовании симпатических чернил, микроточек и цифровых водяных знаков для сокрытия информации.

Выбор для конкретных систем должен быть основан на глубоком анализе слабых и сильных сторон тех или иных методов защиты. Обоснованный выбор той или иной системы защиты в общем-то должен опираться на какие-то критерии эффективности. К сожалению, до сих пор не разработаны подходящие методики оценки эффективности криптографических систем.

Наиболее простой критерий такой эффективности — вероятность раскрытия ключа или мощность множества ключей. По сути это то же самое, что и криптостойкость. Для ее численной оценки можно использовать также и сложность раскрытия шифра путем перебора всех ключей. Однако, этот критерий не учитывает других важных требований к криптосистемам:

невозможность раскрытия или осмысленной модификации информации на основе анализа ее структуры,
совершенство используемых протоколов защиты,
минимальный объем используемой ключевой информации,
минимальная сложность реализации (в количестве машинных операций), ее стоимость,
высокая оперативность.
Поэтому желательно конечно использование некоторых интегральных показателей, учитывающих указанные факторы. Но в любом случае выбранный комплекс криптографических методов должен сочетать как удобство, гибкость и оперативность использования, так и надежную защиту от злоумышленников циркулирующей в системе информации.

Список используемых источников:

Н.А. Молдовян, А.А. Молдовян, М.А. Еремеев, Криптография. От примитивов к синтезу алгоритмов. С-П. 2004.
В.В. Ященко, Введение в криптографию, М. 1999.
Клод Шеннон. Теория связи в секретных системах. «Работы по теории информации и кибернетике», М., ИЛ, 1963, с. 333-369.
Х.К.А. ван Тилборг, Основы криптологии. Профессиональное руководство и интерактивный учебник, М. «Мир», 2006.

Криптографические методы защиты информации

Криптографические методы защиты информации – это мощное оружие в борьбе за информационную безопасность.

Криптография (от древне-греч. κρυπτος – скрытый и γραϕω – пишу) – наука о методах обеспечения конфиденциальности и аутентичности информации.

Криптография представляет собой совокупность методов преобразования данных, направленных на то, чтобы сделать эти данные бесполезными для злоумышленника. Такие преобразования позволяют решить два главных вопроса, касающихся безопасности информации:

  • защиту конфиденциальности;
  • защиту целостности.

Проблемы защиты конфиденциальности и целостности информации тесно связаны между собой, поэтому методы решения одной из них часто применимы для решения другой.

Известны различные подходы к классификации методов криптографического преобразования информации. По виду воздействия на исходную информацию методы криптографического преобразования информации могут быть разделены на четыре группы:

Процесс шифрования заключается в проведении обратимых математических, логических, комбинаторных и других преобразований исходной информации, в результате которых зашифрованная информация представляет собой хаотический набор букв, цифр, других символов и двоичных кодов.

Для шифрования информации используются алгоритм преобразования и ключ. Как правило, алгоритм для определенного метода шифрования является неизменным. Исходными данными для алгоритма шифрования служит информация, подлежащая зашифрованию, и ключ шифрования. Ключ содержит управляющую информацию, которая определяет выбор преобразования на определенных шагах алгоритма и величины операндов, используемых при реализации алгоритма шифрования. Операнд – это константа, переменная, функция, выражение и другой объект языка программирования, над которым производятся операции.

В отличие от других методов криптографического преобразования информации, методы стеганографии позволяют скрыть не только смысл хранящейся или передаваемой информации, но и сам факт хранения или передачи закрытой информации. В основе всех методов стеганографии лежит маскирование закрытой информации среди открытых файлов, т.е. скрываются секретные данные, при этом создаются реалистичные данные, которые невозможно отличить от настоящих. Обработка мультимедийных файлов в информационных системах открыла практически неограниченные возможности перед стеганографией.

Графическая и звуковая информация представляются в числовом виде. Так, в графических объектах наименьший элемент изображения может кодироваться одним байтом. В младшие разряды определенных байтов изображения в соответствии с алгоритмом криптографического преобразования помещаются биты скрытого файла. Если правильно подобрать алгоритм преобразования и изображение, на фоне которого помещается скрытый файл, то человеческому глазу практически невозможно отличить полученное изображение от исходного. С помощью средств стеганографии могут маскироваться текст, изображение, речь, цифровая подпись, зашифрованное сообщение.

Скрытый файл также может быть зашифрован. Если кто-то случайно обнаружит скрытый файл, то зашифрованная информация будет воспринята как сбой в работе системы. Комплексное использование стеганографии и шифрования многократно повышает сложность решения задачи обнаружения и раскрытия конфиденциальной информации.

Содержанием процесса кодирование информации является замена исходного смысла сообщения (слов, предложений) кодами. В качестве кодов могут использоваться сочетания букв, цифр, знаков. При кодировании и обратном преобразовании используются специальные таблицы или словари. В информационных сетях кодирование исходного сообщения (или сигнала) программно-аппаратными средствами применяется для повышения достоверности передаваемой информации.

Часто кодирование и шифрование ошибочно принимают за одно и тоже, забыв о том, что для восстановления закодированного сообщения, достаточно знать правило замены, в то время как для расшифровки сообщения помимо знания правил шифрования, требуется ключ к шифру.

Сжатие информации может быть отнесено к методам криптографического преобразования информации с определенными оговорками. Целью сжатия является сокращение объема информации. В то же время сжатая информация не может быть прочитана или использована без обратного преобразования. Учитывая доступность средств сжатия и обратного преобразования, эти методы нельзя рассматривать как надежные средства криптографического преобразования информации. Даже если держать в секрете алгоритмы, то они могут быть сравнительно легко раскрыты статистическими методами обработки. Поэтому сжатые файлы конфиденциальной информации подвергаются последующему шифрованию. Для сокращения времени передачи данных целесообразно совмещать процесс сжатия и шифрования информации.

Основным видом криптографического преобразования информации в компьютерных сетях является шифрование . Под шифрованием понимается процесс преобразования открытой информации в зашифрованную информацию (шифртекст) или процесс обратного преобразования зашифрованной информации в открытую. Процесс преобразования открытой информации в закрытую получил название зашифрование, а процесс преобразования закрытой информации в открытую – расшифрование.

За многовековую историю использования шифрования информации человечеством изобретено множество методов шифрования или шифров. Методом шифрования (шифром) называется совокупность обратимых преобразований открытой информации в закрытую информацию в соответствии с алгоритмом шифрования. Большинство методов шифрования не выдержали проверку временем, а некоторые используются и до сих пор. Появление компьютеров и компьютерных сетей инициировало процесс разработки новых шифров, учитывающих возможности использования компьютерной техники как для зашифрования/расшифрования информации, так и для атак на шифр. Атака на шифр (криптоанализ, криптоатака) – это процесс расшифрования закрытой информации без знания ключа и, возможно, при отсутствии сведений об алгоритме шифрования.

Современные методы шифрования должны отвечать следующим требованиям:

  • стойкость шифра противостоять криптоанализу (криптостойкость) должна быть такой, чтобы вскрытие его могло быть осуществлено только путем решения задачи полного перебора ключей;
  • криптостойкость обеспечивается не секретностью алгоритма шифрования, а секретностью ключа;
  • шифртекст не должен существенно превосходить по объему исходную информацию;
  • ошибки, возникающие при шифровании, не должны приводить к искажениям и потерям информации;
  • время шифрования не должно быть большим;
  • стоимость шифрования должна быть согласована со стоимостью закрываемой информации.

Криптостойкость шифра является его основным показателем эффективности. Она измеряется временем или стоимостью средств, необходимых криптоаналитику для получения исходной информации по шифртексту, при условии, что ему неизвестен ключ.

Сохранить в секрете широко используемый алгоритм шифрования практически невозможно. Поэтому алгоритм не должен иметь скрытых слабых мест, которыми могли бы воспользоваться криптоаналитики. Если это условие выполняется, то криптостойкость шифра определяется длиной ключа, так как единственный путь вскрытия зашифрованной информации – перебор комбинаций ключа и выполнение алгоритма расшифрования. Таким образом, время и средства, затрачиваемые на криптоанализ, зависят от длины ключа и сложности алгоритма шифрования.

Работа простой криптосистемы проиллюстрирована на рис. 2.2.

Отправитель генерирует открытый текст исходного сообщения М, которое должно быть передано законному получателю по незащищённому каналу. За каналом следит перехватчик с целью перехватить и раскрыть передаваемое сообщение. Для того чтобы перехватчик не смог узнать содержание сообщения М, отправитель шифрует его с помощью обратимого преобразования Ек и получает шифртекст (или криптограмму) С=Ек(М) , который отправляет получателю.

Законный получатель, приняв шифртекст С, расшифровывает его с помощью обратного преобразования Dк(С) и получает исходное сообщение в виде открытого текста М.

Преобразование Ек выбирается из семейства криптографических преобразований, называемых криптоалгоритмами. Параметр, с помощью которого выбирается отдельное преобразование, называется криптографическим ключом К.

Криптосистема имеет разные варианты реализации: набор инструкций, аппаратные средства, комплекс программ, которые позволяют зашифровать открытый текст и расшифровать шифртекст различными способами, один из которых выбирается с помощью конкретного ключа К.

Преобразование шифрования может быть симметричным и асимметричным относительно преобразования расшифрования. Это важное свойство определяет два класса криптосистем:

  • симметричные (одноключевые) криптосистемы;
  • асимметричные (двухключевые) криптосистемы (с открытым ключом).

Симметричное шифрование, которое часто называют шифрованием с помощью секретных ключей, в основном используется для обеспечения конфиденциальности данных. Для того чтобы обеспечить конфиденциальность данных, пользователи должны совместно выбрать единый математический алгоритм, который будет использоваться для шифрования и расшифровки данных. Кроме того, им нужно выбрать общий (секретный) ключ, который будет использоваться с принятым ими алгоритмом шифрования/дешифрования, т.е. один и тот же ключ используется и для зашифрования, и для расшифрования (слово «симметричный» означает одинаковый для обеих сторон).

Пример симметричного шифрования показан на рис. 2.2.

Сегодня широко используются такие алгоритмы шифрования, как Data Encryption Standard (DES), 3DES (или «тройной DES») и International Data Encryption Algorithm (IDEA). Эти алгоритмы шифруют сообщения блоками по 64 бита. Если объем сообщения превышает 64 бита (как это обычно и бывает), необходимо разбить его на блоки по 64 бита в каждом, а затем каким-то образом свести их воедино. Такое объединение, как правило, происходит одним из следующих четырех методов:

  • электронной кодовой книги (Electronic Code Book, ECB);
  • цепочки зашифрованных блоков (Cipher Block Changing, CBC);
  • x-битовой зашифрованной обратной связи (Cipher FeedBack, CFB-x);
  • выходной обратной связи (Output FeedBack, OFB).

Triple DES (3DES) – симметричный блочный шифр, созданный на основе алгоритма DES, с целью устранения главного недостатка последнего – малой длины ключа (56 бит), который может быть взломан методом полного перебора ключа. Скорость работы 3DES в 3 раза ниже, чем у DES, но криптостойкость намного выше. Время, требуемое для криптоанализа 3DES, может быть намного больше, чем время, нужное для вскрытия DES.

Алгоритм AES (Advanced Encryption Standard), также известный как Rijndael – симметричный алгоритм блочного шифрования – шифрует сообщения блоками по 128 бит, использует ключ 128/192/256 бит.

Шифрование с помощью секретного ключа часто используется для поддержки конфиденциальности данных и очень эффективно реализуется с помощью неизменяемых «вшитых» программ (firmware). Этот метод можно использовать для аутентификации и поддержания целостности данных.

С методом симметричного шифрования связаны следующие проблемы:


Статьи по теме